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This paper is concerned with using artificial neural networks for modelling and temperature control of
a yeast fermentation biochemical reactor. At first, a neural model of the process is trained using avail-
able data sets generated from the fundamental model. The neural model is pruned in order to reduce
its complexity and to improve its prediction ability. Next, a computationally efficient nonlinear model
predictive control (MPC) algorithm with Nonlinear Prediction and Linearisation (MPC-NPL) which needs
solving on-line a quadratic programming problem is developed. It is shown that the algorithm results in
closed-loop control performance similar to that obtained in nonlinear MPC, which hinges on full on-line
non-convex optimisation. The computational complexity of the MPC-NPL algorithm is shown, the control
accuracy and the disturbance rejection ability are also demonstrated in the case of noisy measurements
and disturbances affecting the process.
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1. Introduction

Model Predictive Control (MPC) refers to a class of computer
control algorithms that directly use an explicit dynamic model in
order to predict future behaviour of the process [19,32,36]. At each
sampling instant a predefined performance function is optimised
on-line. As a result, a future control policy is obtained, the first
element of which is actually applied to the process and the whole
procedure is repeated.

MPC is recognised as the only one among advanced control
techniques (defined as techniques more advanced than the PID
approach) which has been exceptionally successful in numer-
ous practical applications including chemical engineering, food
processing, robotics, automotive and aerospace [31]. Because a
dynamic model is used to predict future behaviour of the process,
MPC algorithms have a unique ability to take into account con-
straints imposed on both process inputs (manipulated variables)
and outputs (controlled variables) or states. Constraints are very
important, they usually determine quality, economic efficiency and
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safety. Moreover, MPC techniques are very efficient in multivariable
process control.

If it is possible, MPC algorithms based on linear models should
be used because of low computational complexity [19,36]. Since
properties of many technological processes are nonlinear, different
nonlinear MPC techniques have been developed [9,24,31,36]. The
structure of the nonlinear model and the way it is used on-line affect
the accuracy, the computational burden and the reliability of non-
linear MPC. Fundamental (first-principle) models [15,21], although
potentially very precise, are usually not suitable for on-line con-
trol. Such models are comprised of systems of nonlinear differential
and algebraic equations which have to be solved on-line in MPC.
Such an approach is usually computationally demanding as fun-
damental models can be very complex and may lead to numerical
problems (e.g. stiffness, ill-conditioning). Moreover, in many cases
development of fundamental models is difficult.

In recent years neural networks [8] have been frequently used
for modelling and control of nonlinear processes [12,25,36]. It
is because they have many advantages. More specifically, neural
networks are universal approximators [10], hence they may be
used to approximate nonlinear behaviour of technological dynamic
processes. Neural networks are trained using available data sets,
the necessity of developing complicated fundamental models is
avoided. Unlike fundamental models, neural models have sim-
ple structures and relatively small numbers of parameters. As a
result, numerical problems typical of MPC algorithms based on
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Nomenclature

Notation

0ixj the zeros matrix of dimensionality i x j

ai, b coefficients of the linear model

ai(x(k)), bj(x(k)) coefficients of the linearised model

Agp, bgp definition of constraints in a quadratic program-
ming problem

At heat transfer area (m?)

A1,A;  exponential factors in Arhenius equation

Co, oxygen concentration in the liquid phase (mg/1)

c(’.f)z equilibrium concentration of oxygen in the liquid
phase (mg/1)

C(’f)z 0 equilibrium concentration of oxygen in distilled
water (mg/l)

cp product (ethanol) concentration (g/I)

Cs substrate (glucose) concentration (g/I)

Cs,in glucose concentration in the feed flow (g/I)

cx biomass (yeast) concentration (g/1)

Cheatag  heat capacity of the cooling agent (Jg~! K1)
Cheaty  heat capacity of the mass of the reaction (J g 1K1
d(k) estimation of the unmeasured disturbance
Ea,, Ea, activation energy (J/mol)
neural model of the process
fop.Hgp definition of the objective function in the a quadratic
programming problem

Fag flow of the cooling agent (1/h)

Fe outlet flow from the reactor (1/h)

F; flow of the substrate entering the reactor (1/h)

G(k) the dynamic matrix

H; specificionic constant of ioni (i = Ca, Cl, CO3, H, Mg,
Na, OH)

I; ionic strength of ion i (i = Ca, Cl, CO3, H, Mg, Na, OH)

I the identity matrix of dimensionality i x j

Ly, Ii(p), Iyp(p) auxiliary coefficients in MPC-NPL

J(k) the objective function of MPC

JNPL an auxiliary matrix in MPC-NPL

k discrete time (the current sampling instant)

(kya) product of the mass-transfer coefficient for oxygen

and gas-phase specific area h~!
(kja)g  product of the mass-transfer coefficient at 20° C for
0, and gas-phase specific area h~!

K the number of hidden nodes in the neural network

Ko, constant for oxygen consumption (mg/l)

Kp constant of growth inhibition by ethanol (g/1)

Kp, constant of fermentation inhibition by ethanol (g/1)

Ks constant in the substrate term for growth (g/1)

Ks, constant in the substrate term for ethanol produc-
tion (g/1)

Kr heat transfer coefficient Jh~! m—2K-1)

M1, M5, M3 auxiliary matrices in MPC-NPL

m; quantity of inorganic salt i (i = CaCO3, MgCl,, NaCl)
(8)

M; molecular/atomic mass of salt/ion i (g/mol)

nang definition of the order of the dynamics

N, Ny prediction and control horizon, respectively

ro, rate of oxygen consumption (mgl-1h-1)

R universal gas constant (Jmol-1K-1)

Rsp ratio of ethanol produced per glucose consumed for
fermentation

Rsx ratio of cell produced per glucose consumed for
growth

SSE sum of squared errors

si(k) step-response coefficients of the linearised model
Sil.]., §?  saliency coefficients

t continuous time (h)

Tag temperature of the cooling agent in the jacket (°C)
Tin temperature of the substrate flow entering to the

reactor (°C)
Tin,ag temperature of the cooling agent entering to the

jacket (°C)

T; temperature in the reactor (°C)

Tref reference trajectory of the temperature in the reac-
tor (°C)

u input of the model/proces

ymin ymax ymin ymax  definition of constraints of the manip-
ulated variable in MPC

uNPL(k) an auxiliary vector in MPC-NPL

%4 volume of the mass of the reaction (1)

V; volume of the jacket (1)

wi{j, wi2 weights of the neural network

x(k) the linearisation point in MPC-NPL

Xqp solution to the quadratic programming problem

ymin ymax - ymin - ymax  definition of constraints of the con-
trolled variable in MPC

y output of the model/proces

yO(k + plk), ¥°(k) the free trajectory
yef(k + pik), y'ef(k) the reference trajectory
y(k + plk),y(k) predicted trajectory of the controlled variable

Yo, the amount of oxygen consumed per unit biomass
produced (mg/mg)

zi(k) sums of inputs of the ith hidden node of the neural
network

Greek symbols

AH; reaction heat of fermentation (kJ/mol O, consumed)

Au(k + plk), Au(k) future increments of the manipulated
variable

Aumax AumaX  definition of constraints of the manipulated
variable in MPC
emin " eMax  gslack variables in MPC optimisation problem

[0 transfer function of the hidden nodes of the neural
network

Mo, maximum specific oxygen consumption rate (h—1)

Up maximum specific fermentation rate (h—1)

[75% maximum specific growth rate (h=1)

Ap, A weights in MPC

Pag density of the cooling agent (g/I)

pmin| pmax  wejghting coefficients in MPC optimisation prob-
lem

P density of the mass of the reaction (g/1)

T discrete-time delay

comprehensive fundamental models are not encountered because
neural models directly describe input-output relations of process
variables, complicated systems of nonlinear differential and alge-
braic equations do not have to be solved on-line. Different versions
of MPC algorithms based on neural models have been developed
[2,14,17,18,25,28,29,30,36-39].

This paper is concerned with using artificial neural networks
for modelling and temperature control of a yeast fermentation
biochemical reactor the fundamental model of which is thor-
oughly described in [26]. Alcoholic fermentation is one of the most
important biochemical processes. Its significance has significantly
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increased recently because ethanol can be viewed as an alternative
source of energy (biofuel). Because the process exhibits signifi-
cantly nonlinear behaviour, the classical PID controller and the MPC
algorithm based on a linear model are unable to control the process
efficiently as demonstrated in [26]. In [26] a fully-fledged nonlinear
MPC algorithm in which a nonlinear optimisation problem has to
be solved at each sampling instant on-line is developed. As a com-
putationally efficient alternative, an easy to implement controller
based on an inverse model of the process is recommended.

In this paper a computationally efficient MPC approach to tem-
perature control of a yeast fermentation biochemical reactor is
recommended. At first, the neural model of the process is trained
using available data sets generated from the fundamental model. In
order to reduce the complexity of the neural model and to improve
its prediction ability the neural network is pruned using the Opti-
mal Brain Damage algorithm [13]. Next, a computationally efficient
nonlinear MPC algorithm with Nonlinear Prediction and Linearisa-
tion (MPC-NPL) [16-18,36,37] developed by the author of this paper
is used. The algorithm needs solving on-line a quadratic program-
ming problem. It is shown that the algorithm results in closed-loop
control performance similar to that obtained in nonlinear MPC,
which hinges on full on-line non-convex optimisation. The compu-
tational complexity of the algorithm is shown, the control accuracy
and the disturbance rejection ability are also demonstrated in the
case of noisy measurements and disturbances affecting the process.

This paper is organised as follows. Section 2 shortly presents the
general idea of MPC, describes the structure of the neural model and
details the MPC-NPL algorithm. Next, in Section 3, the fundamen-
tal model of the yeast fermentation biochemical reactor is shortly
presented, development of the neural model is described and simu-
lation results of MPC algorithms based on linear and neural models
are presented and discussed. Finally, Section 4 concludes the paper.

2. Computationally efficient model predictive control
based on neural models

2.1. Model predictive control problem formulation

Although a number of different MPC techniques have been
developed over the years, the main idea (i.e. the explicit applica-
tion of a process model, optimisation of a cost function and the
receding horizon approach) is always the same [19,32,36]. More
specifically, at each consecutive sampling instant, k, a set of future
control increments is calculated

Au(k) = [Au(klk). .. Au(k + Ny — 11k)]" (1)

It is assumed that Au(k + p|k) = 0 for p > Ny, where Ny, is the
control horizon. Usually, the objective is to minimise differences
between the reference trajectory y™f(k + p|k) and predicted values
of the output y(k + p|k) over the prediction horizon N > N, and to
penalise excessive control increments. The following quadratic cost
function is typically used

N
J) =30k +pIk) — 9k -+ pIK))’
®
+ ZAP(Au(I<+p|k))2
p=0

where A, > 0 are weighting factors. Only the first element of the
determined sequence (1) is actually applied to the process

u(k) = Au(kjk) +u(k — 1) 3)

At the next sampling instant, k + 1, the prediction is shifted one
step forward, the output measurement is updated and the whole
procedure is repeated.

Since constraints have to be usually taken into account, future
controlincrements are determined from the following optimization
problem

k)

min
Au(k[k)... Au(k-+Ny—1]k)
subject to

umn < y(k+plk) <um* p=0,...,N,—1 (4)

—Aum™X < Au(k+plk) < Au™* p=0,...,N, -1
ymin < y(k+plk) <y™*, p=1,...,N
The general prediction equationforp=1,...,Nis
Y(k +plk) = y(k + plk) + d(k) (5)

where quantities y(k + p|k) are calculated from a dynamic model
of the process. The “DMC type” disturbance model is used in which
the unmeasured disturbance d(k) is assumed to be constant over
the prediction horizon [36]. It is estimated from

d(k) = y(k) — y(klk — 1) (6)

where y(k) is measured while y(k|k — 1) is calculated from the
dynamic model.

2.2. Neural model of the process

Predicted values of the output signal, y(k + p|k), over the predic-
tion horizon N are calculated from (5) using a dynamic model of the
process. Let the Single-Input Single-Output (SISO) process under
consideration be described by the following nonlinear discrete-
time equation

yk) =fuk-r1),...,u(lk—ng),
y(k—=1),...,y(k—na))

where f : #"a+1B-T+1 _ 9t 7 < np. A feedforward Multi Layer Per-
ceptron (MLP) neural network with one hidden layer and a linear
output [8]is used as the function fin (7). The structure of the neural
model is depicted in Fig. 1. Output of the model can be expressed
as

(7)

K

yk)y =wi+ > wle(zi(k) 8)
i=1

where z;(k) are sums of inputs of the ith hidden node, ¢ : i — %

is the nonlinear transfer function (e.g. the hyperbolic tangent), K is
the number of hidden nodes. Recalling the input arguments of the

Fig. 1. The structure of the neural model.
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general nonlinear model (7) one has

Iy
zi(k) = W,{O + Zw},}.u(k —T+1-}j)
= (9)

np
> wh k=)
j=1

where I, = ng — 7 + 1. Weights of the network are denoted by Wil,j,
i=1,...,K,j=0,....,np+ng—t+1,andw?,i =0, ..., K, for the
first and the second layer, respectively.

Using the general prediction Eq. (5) and the nonlinear neural
model defined by (8) and (9), output predictions over the prediction
horizon are calculated from

K
Pk + plk) = w3 +Zwi2g0(zi(l<+p|l<))+d(l<) (10)
i=1

Considering the prediction of the output over the horizon N for
a sampling instant k + p calculated at the current sampling instant
k, the quantities z;(k + p|k) and consequently y(k + p|k) depend on
future control signals (i.e. decision variables of the MPC algorithm),
control signal values applied to the plant at previous sampling
instants, future output predictions and measured values of the
plant output signal. From (9) one has

Lys (D)
zi(k + plk) :wgo+ZWi{ju(k-r+1—j+p|k)
j=1
lu
T Z wlu(k—7+1-j+p)
J=lyp(p)+1
Iyp(P) (]1)
+ Y wl 9k =)+ pik)
j=1
np
+ > wili o+ )yk—j+p)
J=lyp(p)+1

where I,¢(p) = max(min(p —t+1,1),0) and Iy(p)=min(p —
1, na). Using (6), the unmeasured disturbance is estimated from

K
d(k) = y(k) - <W2(0) + ZWZ(i)(P(Zi(k))> (12)
i=1

2.3. MPC-NPL optimisation problem

If for prediction the nonlinear neural model is used without
any simplifications, predictions y(k + p|k) are nonlinear functions
of future control moves (1). In such a case the nonlinear MPC
optimisation problem (4) has to be solved on-line at each sam-
pling instant. Although in theory such an approach seems to be
potentially very precise, it has limited practical applicability. It is
necessary to emphasise the fact that the difficulty of the nonlinear
MPC optimization problem is twofold. First of all, it is nonlinear,
computationally demanding, its computational burden is big. Sec-
ondly, it may be non-convex and even multi-modal. Unfortunately,
for such problems there are no sufficiently fast and reliable opti-
mization algorithms, i.e. those which would be able to determine
the global optimal solution at each sampling instant and within a
predefined time limit as it is required in on-line control.

Bearing in mind difficulties typical of MPC with on-line non-
linear optimisation, in this paper the MPC scheme with Nonlinear
Prediction and Linearisation (MPC-NPL) [16-18,36,37]. is used. The
algorithm is computationally efficient, it requires solving on-line

MPC-NPL algorithm

Quadratic L ou(k) 5
optimisation : > Process

k)

e O

1 Linearisation,
calculation of the
nonlinear free trajectory

Neural model ¥

Fig. 2. The structure of the MPC algorithm with Nonlinear Prediction and Lineari-
sation (MPC-NPL).

only a quadratic programming problem. The structure of the algo-
rithm is depicted in Fig. 2. At each sampling instant k the neural
model is used on-line twice: to determine a local linearisation and
a nonlinear free trajectory. It is assumed that the output prediction
can be expressed as the sum of a forced trajectory, which depends
only on the future (i.e. on future input moves Au(k)) and the free
trajectory y°(k), which depends only on the past

y(k) = G(k)Au(k) +y°(k) (13)
where yO(k) = [y°(k + 1k)...y°(k + Nik)]". The dynamic matrix
G(k) of dimensionality N x Ny, is comprised of step-response coef-
ficients of the linearised model

s1(k) 0 . 0
so(k)  sy(k) ... 0
G(k) = . . . ) (14)

sv(k) sno1(k) . Sy_nesr(K)

Both the free trajectory and the dynamic matrix are calculated
on-line from the nonlinear neural model taking into account the
current state of the process. The implementation of the algorithm
is described in more details in the following subsection.

On the one hand, the suboptimal prediction calculated from (13)
is different from the optimal one determined from the nonlinear
neural model as it is done in the MPC algorithm with nonlinear
optimization [17,36,37]. On the other hand, thanks to using the
suboptimal prediction, the optimisation problem (4) becomes the
following quadratic programming task

min [y™(k) — G(k)Au(k) — y°(k)I1* + | Au(k)[%

Auk)

subject to

umin < JNPLA() 4 uNPL(K) < gmax (15)
—Aum* < Au(k) < Aumax

ymin < Gk Au(k) +y0(k) =y

where

¥ = [yefk 4+ 11k) . ..y (k + Nk)]" (16)
ymin _ [ymin .ymin]T (17)
ymax = [ymax  ymax]T (18)
are vectors of length N,

ymin — [ymin | yyminjt (19)
umax = [ymax | ymax ]t (20)
Au™X = [Aum L Aymaxt (1)
uNPL(k) = [u(k —1)...u(k—1)] (22)
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are vectors of length Ny, A = diag(Ao, - . ., An,_1).JV - is the all ones
lower triangular matrix of dimensionality N;, x Ny.

If output constraints have to be taken into account, the MPC-NPL
optimisation task (15) may be affected by the infeasibility problem,
i.e. the admissible set of the optimization problem may be empty.
In order to cope with such a situation, output constraints have
to be softened by means of slack variables [19,36]. The MPC-NPL
quadratic programming problem becomes

Iy (k) —y°(k)—G(k) Au(k) |2+ Au(k)I{
min
Auk),emin, gmax +pmin”€min H2+pmax Hemaxllz
subject to
ymin §]Au(k) + uk’l(k) < ymax
—Aum¥ < Au(k) < Aumax
ymin _ emin gyo(k) 4 G(k)Au(Ic) < ymax 4 gmax

€min >0, gmax >0

A quadratic penalty for constraint violations is used in the MPC
optimisation problem (23), ™" and é™® are vectors of length N
comprising the slack variables and p™", p™M3 > (O are weights.

. T

Let xqp = [AuT(k)(em‘“)T(ema")T] be a vector containing all

decision variables of the MPC-NPL algorithm. The optimisation

problem (23) can be easily rewritten in a standard quadratic pro-
gramming (QP) form

min{ 3 xgpHopXop + fgpXap)
QP

subject to (24)
Aqpxqp < bop
where
Au(k)=Mixqp, M1 = [In,«N,On,x2N] (25)
€™ — Moxgp, M3 = [OnuN, INxNONxN] (26)
&M = Msxqp, M3 = [Onyn, OnNxNINKN] (27)
The cost function in the QP problem (24) is defined by
Hop = 2(MIGT(K)G(k)M; + MTAM,)
(28)
+2pmi“M§M2 + zpmangMg
fop = —2M[GT(k)y™ (k) - y°(k)) (29)
whereas constraints by
—IM; [ _gmin +uk—l(k)'
]M1 ymax _ uk—](k)
~G(k)M1 — M, —y™in 4+ yO(k)
G(k)M; — M3 max _ y0(k
Agr = _1\]/11 . fe=| Y Aum{X( ) (30)
M, Aymax
-M; Onx1
L —-M; J L Onx1 ]

As shown in Fig. 2, in the MPC-NPL algorithm at each sampling
instant k the following steps are repeated:

1. Linearisation of the neural model: obtain step response coeffi-
cients s1(k), ..., sy(k) comprising the dynamic matrix G(k).

2. Calculate the nonlinear free trajectory y9(k) using the neural
model.

3. Solve the quadratic programming problem (24) to determine
Au(k).

4. Apply u(k) = Au(k|k) +u(k —1).

5.Setk:=k+1,gotostep 1.

It has to be pointed out that the general idea of computing the
optimal control law for the current linear approximation of the
nonlinear model is known from the literature [9,24]. If the con-
straints are not taken into account, such an approach leads to the
solution of a state-dependent Riccati equation, it is known as the
“frozen Riccati equation technique”. An important feature of the
unconstrained case is the fact that its stability properties [11,27]
can be analysed in significantly easier way in comparison with the
constrained one [20]. Because of the same reason and the simplic-
ity of implementation, unconstrained MPC algorithms which use
the local linearisation approach are frequently considered in the
literature [22,36].

In practice stability of the MPC-NPL algorithm can be achieved
by proper tuning of the prediction horizon and weighting coeffi-
cients Ap. Furthermore, the algorithm can be combined with the
stabilising dual-mode approach [23] as detailed in [16].

2.4. On-line linearisation of the neural model and calculation of
the nonlinear free trajectory

Defining the linearisation point as a vector X(k) composed of past
input and output signal values corresponding to the arguments of
the nonlinear model (7)

®(k) = [k — 7). .0k — ng)y(k —1)... 9k — na)]" (31)

and using Taylor series expansion at this point, the linear approx-
imation of the nonlinear model, obtained at a sampling instant k,
can be expressed as

L
) =f&U)+ Y biRUulk — 1) — ik — 1+ 1))
n = (32)
= a®IN k= 1) = 3k - 1+ 1))
=1

where  ay(X(k)) = —(3f (%(k)))/(oy(k - 1)) ~ and  Dy(x(k)) =
(of (x(k)))/(du(k — 1)) are coefficients of the linearised model.
Taking into account the structure of the neural model shown in
Fig. 1 and defined by (8) and (9) one obtains

K -
ay(®(k)) = —wa%w; sl (33)
i=1
wherel=1,...,n,,and
0 ifl=1,...,7-1
K
by(&(k)) = do(z;(X(k . 34
1(&(Kk)) ZW%%W},FTH fl=z,...,ny OV

i=1

If hyperbolic tangent is used as the nonlinear transfer func-
tion ¢ in the hidden layer of the neural model, one has
(dg(zi(&(k))))/(dzi(&(k))) = 1 — tanh?(z(X(K))).

Step-response coefficients of the linearised model comprising
the dynamic matrix G(k) given by (14) are determined from
min(j,ng)

> bi&(k)

i=1

min(j—1,na)

i=1

si(k) =
(35)
a;(X)(k)s;_i(k)

The nonlinear free trajectory y9(k + plk) over the prediction
horizon,i.e.forp =1, ..., N,is calculated recursively from the gen-
eral prediction Eq. (5) assuming only the influence of the past. The
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“DMC type” disturbance model (12) is also used. Using (10), one has

K
YOk +plk) = w3 + > " w2e(z2(k + pIk)) + d(k) (36)
i=1

Quantities z?(k + plk) are determined from (11) assuming no
changes in control signals from a sampling instant k onwards
and replacing the output predictions by corresponding values of
the free trajectory, i.e. u(k + p|k) := u(k — 1) for p > 0, y(k + p|k) :=
yO(k + plk) for p > 1. One has

’uf(P)
zilk+plk) =wlo+ Y whutk-1)
j=1

Iy
+ Z wlu(k —7+1-j+p)
J=lyr(p)+1

’yp(P)
+> wl YOk =+ plk)
j=1

np
©30 Wl ptkgen)
J=lyp(p)+1

3. Experiments
3.1. Biochemical reactor

The considered yeast fermentation biochemical reactor is shown
in Fig. 3. The reactor is modelled as a continuous stirred tank with
constant substrate feed flow, the outlet flow from the reactor con-
taining the product, the substrate and the biomass is also constant.
Thereactor contains three distinct components: the biomass, which
is a suspension of yeast fed into the system and evacuated contin-
uously, the substrate, which is the solution of glucose feeding the
micro-organism (charomyces cerevisiae) and the product (ethanol),
which is evacuated together with other components. Together with
yeast, inorganic salts are added. It is necessary for the formation
of coenzymes. Inorganic salts have also a strong influence on the
equilibrium concentration of oxygen in the liquid phase. Because a
low dilution rate is necessary, the process has very slow dynamic
properties.

The comprehensive fundamental model of the process is
described in [26], here the model is given in a compact form for

E, c¢sp, Fag N [

v ;

N /
T,” —» Controller [

cs, cx cp I

Fecs,cx cp T
»

Fig. 3. The continuous yeast fermentation reactor control system structure.

completeness of presentation. The model contains the detailed
kinetic model, it takes into account the heat transfer, the depen-
dence of kinetic parameters on temperature, the mass transfer of
oxygen, the influence of the temperature and the ionic strength on
the mass transfer coefficient. Let state variables be defined as fol-
lows: V—the volume of the mass of the reaction (1), cx—the biomass
(yeast) concentration (g/1), cp—the product (ethanol) concentration
(g/1), cs—the substrate (glucose) concentration (g/1), co, —oxygen
concentration in the liquid phase (mg/1), T,—the temperature of the
reactor (°C), Tag—the temperature of the cooling agent in the jacket
(°C). The reactor is described by the following continuous-time
fundamental model containing 7 nonlinear ordinary differential
equations

dv

G =Fi—Fe (38)
dcy _ Cs Fe
qar - MXCXm exp(—Kpcp) — v & (39)
dcp _ Cs Fe
At =R, e FP )y 0
dcg 1 Cs
T = ;@;LxCx [ exp(—Kpcp)
1 _ 41
Rsp Hecx Ks, +¢s exp(—Ke, ce) “
F; e
+Vcs‘in - VCS
dCo F
12 = (k) = co,) = ro, — 7Co, (42)
dT, F; F
(th = (Tin +273) = 17 (Tr +273)
" 1’02 AHr _ KTAT(Tr - Tag) (43)
320 Cheatr VorCheat,r
dTag _ Fag KrAr(T: - Tog) (44)

28 (T 2g — Tag) +
it y; linag g Vj pagCheat,ag

The equilibrium concentration of oxygen in the liquid phase is

¢5, = (14.6 — 0.3943T; + 0.007714T7 — 0.0000646T3)10~ 2 Hili

(45)
where the global effect of ionic strengths is
Macl Mna Mcaco; Mca
H;l; =0.5H +2H —
2 Hil M Myaa V . Mcaco; V
Mmgcl, Mg Myacl |, - Mvgcl, | Ma
+2H ——=+0.5H, +2 —_—
Mg, V 4\ Maal Mwmgcr, )V
m M
+2Hco, 298 805 10 5H,10-PH 4 0.5H010-(14-PH)
Mcaco; V
(46)
The mass transfer coefficient for oxygen is
(kja) = (kja)p1.0247—20 (47)
The rate of oxygen consumption is
Co2
= — 48
To, = [0, Yo, cx Ko, + <o, (48)
The maximum specific growth rate is
E, E;
=A ——1__ ) _A - 72) 49
x 1exP( R(Tr+273)> 26""( R(T; + 273) (49)

Parameters of the fundamental model are given in Table 1 while
nominal operating conditions of the process are given in Table 2.
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Table 1

Parameters of the fundamental model

Ay = 9.5 x 108 (kia)y = 38h~! Mug = 24 g/mol

Ay =2.55 x 1033 Ko, = 8.86mg]l Mgci, = 95 g/mol
AT =1m? Kp = 0.139 g/l Mna = 23 g/mol
Cheatag =4-18Jg'K™1  Kp, =0.07g/l Myac = 58.5g/mol
Cheatr = 4-18] g 1K1 Ks =1.03g/l R=28.31]mol~1K-!
Ea, = 55, 000]/mol Ks, = 1.68g/l Rgp = 0.435

Ea, = 220,000]/mol Kr =3.6x 105 Jh~1 m—2K-! Rsx = 0.607

Hea = -0.303 Mcaco; = ]OOg V] =501

Hc = 0.844 Mygcl, = 100g Yo, = 0.97 mg/mg
Hco, = 0.485 Myac = 500¢g AH; = 518 kJ/mold,
Hy = —0.774 Mc, = 40 g/mol Ko, =0.5h7!

HMg =-0.314 Mcaco3 =90 g/mol pnp =1.79 gl

Hna = —0.550 Mc; = 35.5g/mol pag = 1000g/l

Hoy = 0.941 Mc()3 =60 g/mol pr = 1080 g/l

Table 2

Nominal operating conditions of the process

o, = 3.106953 mg/l pH6

cp = 12.515241 g/l Tag = 27.053939°C

s = 29.738924 g/l Ty, = 25°C

Csin = 60/ Tin,ag =15°C

cx = 0.904677 g/ Ty = 29.573212°C
Fag =181/h V =10001
F,=F.=511/h

As shown in Fig. 3, the temperature of the reactor T; is controlled
by manipulating the flow of the cooling agent F,g. It means that from
the perspective of a control engineer, the considered process has
one input (Fag) and one output (T;). The process exhibits nonlinear
behaviour. Both steady-state and dynamic properties of the yeast
fermentation reactor are nonlinear. The steady-state characteristic
T(Fag) is shown in Figs. 4 and 5 depict open-loop step-responses.

As discussed in [26], two main disturbances can be considered:
changes in the substrate concentration cs and in the temperature
of the substrate flow entering the reactor T;,, but only the second
one has a significant effect on the process and should be consid-
ered as an important disturbance. The steady-state characteristic
T:(Fag, Tin), which shows the dependence of the flow of the cooling
agent and the temperature of input flow on the temperature of the
reactor is depicted in Fig. 6. Fig. 7 shows open-loop step-responses
of the reactor to a changes in the temperature of the substrate flow.

3.2. Yeast fermentation reactor modelling for control

For identification the fundamental model (38)-(49) is used as
the real process, it is simulated open-loop in order to obtain two

38 T T T T T T T T T
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Fig. 4. The steady-state characteristic Ty(Fag) of the reactor.
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Fig. 5. Open-loop step-responses of the reactor caused by increasing (solid line) and
decreasing (dashed line) the flow of the cooling agent Fag by 181/hatk = 1.
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Fig. 6. The steady-state characteristic Ty(Fag, Tjj) of the reactor.
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Fig. 7. Open-loop step-responses of the reactor caused by increasing (solid line)
and decreasing (dashed line) the temperature T;, of the substrate flow entering the
reactorby 1° Catk =1.



M. tawryriczuk / Chemical Engineering Journal 145 (2008) 290-307
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Fig. 8. Training and test data sets.

sets of data, namely training and test data sets depicted in Fig. 8.
Both sets contain 3000 samples. Because the dynamic properties of
the process are very slow, the sampling time is 30 min. The output
signal contains small measurement noise. During simulations the
system of differential equations comprising the fundamental model
is solved. The standard method (Runge-Kutta 45, the solver ODE45
in Matlab) is inefficient because the problem is stiff. More specifi-
cally, it requires a very big number of iterations (steps). For example,
in order to obtain open-loop step-responses of the reactor shown in
Fig. 5 the solver RK45 needs as many as 24128 steps when the flow
of the cooling agent Fy¢ is decreased and 16460 steps when the flow
inincreased. That is why the specialised solver ODE23S [33] for stiff
differential equations is used (it is based on a modified Rosenbrock
formula of order two). For the same open-loop step-responses this
solver requires as few as 24 and 20 steps, respectively.

During model identification the following Sum of Squared Errors
(SSE) performance function is minimized

SSE= Y (ylkik—1)—y(k)y

k € data set

(50)

where y(k|k — 1) denotes the output of the model for the sampling
instant k calculated using signals up to the sampling instant k — 1,
y(k) is the real value of the process output variable collected during
the identification experiment.

Second-order dynamic neural models

y(k) = f(u(k — 1), u(k — 2), y(k — 1), y(k — 2))

are considered. Because input and output process variables
have different orders of magnitude, they are scaled as u=
0.01(Fag — Fagnom), ¥ = 0.1(T; — Trnom) where Fagnom = 18 1/h,
Trnom = 29.573212°C correspond to the nominal operating con-
ditions of the process (Table 2). All compared neural models
have the same input arguments determined by 7 = 1, ny = ng = 2,
the difference is in the number of hidden nodes K. Neural net-
works containing K = 3, 4, 5, 6, 7, 8 hidden nodes are considered.
Second-order dynamic models are used because first-order ones
turn out to be insufficiently accurate while third-order structures
do not improve the accuracy significantly. The hyperbolic tangent
transfer function is used in the hidden layer.

Table 3 compares the accuracy of neural models in terms of
Sum of Squared Errors for training and test data sets, total num-
bers of parameters (weights) are also given. The influence of the
number of hidden nodes K on the accuracy of neural models for
training and test data sets is also depicted in Fig. 9. Different

(51)

Table 3
The influence of the number of hidden nodes K on the complexity and the accuracy
of neural models for training and test data sets

K No. of weights SSEtraining SSEtest

3 19 1.097013 x 10-! 2.991501 x 10!
4 25 7.638250 x 102 1.235549 x 10!
5 31 7.073799 x 102 9.913449 x 102
6 37 6.698869 x 102 9.858591 x 102
7 43 6.031582 x 102 1.473690 x 10!
8 49 5.617879 x 102 1.719373 x 10!

training algorithms have been tested: the rudimentary backpropa-
gation scheme (i.e. the steepest descent), the conjugate gradient
methods (Polak-Ribiere, Fletcher-Reeves) and the quasi-Newton
algorithms (DFP, BFGS) [1]. Finally, all neural models are trained
using the BFGS algorithm, which outperforms all the aforemen-
tioned competitors in terms of learning time. Such an observation
is not surprising, since neural network training task is in fact an
unconstrained minimisation problem with the SSE performance
index as the objective function. For each neural model structure
the identification experiment is repeated 10 times, weights of neu-
ral networks are initialised randomly. The results presented are the
best obtained.

0.35 ’ ’ ’ : :
B training data set
test data set
0.3r —
0.251 ]
021 1
w
w —
w
0.15r 1
01r 4
N IH IH I |
0 !
3 4 5 6 7 8
K

Fig. 9. The influence of the number of hidden nodes K on the accuracy of neural
models for training and test data sets.
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Fig. 10. The structure of the neural model before (left) and after pruning (right).

On the one hand, increasing the number of hidden nodes leads
to reducing the SSE performance index for the training data set.
On the other hand, it is a well known fact that neural models with
too many parameters (weights) have poor generalisation abilities
(overfitting). It is easily observed in the case of the considered neu-
ral models of the yeast fermentation reactor. For the test data set the
value of the SSE performance index rapidly increases when K > 7.
The model which is next used in MPC algorithms should have good
prediction accuracy and be relatively uncomplicated. Considering
neural models whose parameters are summarised in Table 3, the
model with K =5 hidden nodes is chosen as a reasonable com-
promise between the accuracy and the complexity. Of course, one
can also choose the model containing K = 6nodes, but its SSE is
only 5.30% (the training data set) and only 0.55% (the test data
set) smaller whereas it has 6 weights more, which means that its
complexity is 19.35% bigger.

In order to further improve the accuracy of the neural model
and to reduce the number of weights the neural network can be
pruned. In [26] a version of the Optimal Brain Surgeon (OBS) prun-
ing algorithm [7] detailed in [6] is used. In this paper the Optimal
Brain Damage (OBD) algorithm [13] is used. In comparison with
the OBS algorithm its implementation is simpler, but it results in
similar reduction of the model complexity. For pruning, the OBD

training data set

1500 2000

k

2500 3000

1500 2000 2500

k

1 500 1000 3000

algorithm uses information of second-order derivatives of the SSE
performance function which is minimised during training. The
second-order Taylor expansion of SSE about its minimum is used.
The objective is to find a set of weights whose removing is likely to
result in the least change in SSE. In order to achieve reasonable low
computational complexity, only diagonal terms of the second-order
Taylor expansion are included into the definition of the saliency of
parameters. This corresponds to the assumption that the Hessian
matrix is diagonal. A weight of the network is removed when its
saliency is small. For the first layer of the network the saliency is
defined as

1 92SSE
=g sy (52)
3(Wi’j)
wherei=1,...,K,j=0,...,na+ng— 7+ 1. For the second layer
the saliency is
1 92SSE
$2= 0 - (w2)’ (53)
2 y(w?)

wherei =0, ..., K.(3? SSE)/(3(w],)*)and (9 SSE)/(8(w?)") denote
the second-order derivatives of the SSE performance function with

test data set

1 500 2500 3000

k

-0.2 ]
1000 2000 3000

1500 2500

k
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Fig. 11. Top: the process (solid line with points) vs. the neural model (dashed line with circles) for training and test data sets; bottom: prediction errors.
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training data set
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test data set
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Fig. 12. The process (solid line) vs. the linear model (dashed line) for training and test data sets.

respect to weights of the first and the second layer, respectively.
The OBD pruning algorithm can be summarized as follows:

1. Train the rudimentary neural network.

2. Calculate saliency coefficients Si{ jand S2.

3. Eliminate one weight the saliency of which is the smallest.

4. Retrain the neural network.

5. Stop if pruning results in increasing the SSE performance index.
6. Go to step 2.

Initially, the neural network contains 5 hidden nodes, it has has
31 weights. As a result of the OBD pruning algorithm, 12 weights
are removed, which means that the complexity of the rudimen-
tary neural network is reduced by 38%. The structure of the neural
network before and after pruning is shown in Fig. 10. The SSE per-
formance index of the pruned neural network for the training data
setis 6.827791 x 10~2, which means that the accuracy of the model
is very close to that of the rudimentary (i.e. not pruned) model con-
taining K = 6 hidden nodes (Table 3). Additionally, for the test data
set the SSE performance index is 9.219128 x 10~2. Fig. 11 shows
the output of the process and the output of the neural model for
both training and test data sets. Because the accuracy of the neu-
ral model is very high, prediction errors are also shown. All things

training data set

1500 2000 2500

k

1000

1 500

3000

considered, thanks to pruning the complexity of the neural model
is considerably reduced, is has good generalisation abilities.

It is an interesting question if a linear model with constant
parameters would lead to a similar modelling accuracy. The ques-
tion is important because MPC algorithms which base on linear
models can be easily implemented and their computational com-
plexity is low. The linear second-order dynamic model
y(k) = byu(k — 1)+ byu(k — 2) — a;y(k — 1) — apy(k — 2) (54)
is then found. The linear model has the same input arguments as
the neural one (54). Unfortunately, because the process exhibits
significantly nonlinear behaviour as shown in Figs. 4 and 5, the
accuracy of the linear model is low. Fig. 12 compares the output of
the process and the output of the linear model for both training and
test data sets. For the training data set SSE = 73.205301, for the test
data set SSE = 69.846697.

Neural networks are universal approximators [ 10], which means
that a multilayer perceptron with one hidden layer can approxi-
mate any smooth function to an arbitrary degree of accuracy. On
the other hand, the question still remains whether the process
can be represented by a a simpler model than the neural one.
Although different model structures can be used [5], an interest-
ing idea is to find the state-dependent parameter representations,

test data set
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k

1000

1 500

3000

Fig. 13. The process (solid line) vs. the nonlinear polynomial model (dashed line) for training and test data sets.
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Fig. 14. Experiment 1 (the reference trajectory 1): the GPC algorithm based on the linear model.

i.e. a model whose parameters depend on the state of the process.
For example, in [35] a nonlinear multivariable distillation column
which has a state-dependent dynamic response similar to that of
the discussed biochemical reactor is modelled by a simple linear
model, whose parameters depend affinely on process outputs. The
state-dependent parameter modelling is a well-established tech-
nique. Considering the steady-state characteristic shown in Fig. 4
and open-loop step-responses depicted in Fig. 5 it is evident that
the behaviour of the process is similar to that of the second-order
system whose time constant and stationary gain vary smoothly as
functions of the state. Hence, the nonlinear polynomial model

y(k) = (b1o + bny(k — 1)u(k — 1) + (bag + ba1y(k — 1))u(k — 2)
—(aio + any(k —1))y(k — 1) — (azo + az1y(k — 1))y(k — 2)(55)

is found. The model is similar to the linear one (54) but its param-
eters are linear functions of the output. Fig. 13 shows the output
of the process and the output of the model for both training and
test data sets. For the training data set SSE = 7.742230, for the test
data set SSE = 6.425223. On the one hand, the accuracy of the non-
linear polynomial model is much higher in comparison with the
linear model. On the other hand, the nonlinear polynomial model
is significantly less precise than the neural one.

Considering Figs. 11-13 one can easily see that the neural
model outperforms both linear and nonlinear polynomial mod-
els. The neural model is able to very precisely predict behaviour
of the process. Hence, the pruned neural model with K =5 hid-

45
40+
35+

30+

100 150 200
k

1 50

den nodes is recommended to be next used in nonlinear MPC
algorithms.

3.3. Yeast fermentation reactor control

The fundamental model (38)-(49) is used as the real process
during simulations of MPC algorithms. The model is solved using
the specialised solver ODE23S for stiff differential equations [33].
The horizons of MPC are N = 10, Nu = 3, the weighting coefficients
Ap = 2. (As far as choosing parameters of MPC, there are many
tuning criteria in the literature [4,34] and this issue is not dis-
cussed here.) The manipulated variable is constrained, Fa‘gi“ =0
1/h, F33#* = 2001/h. In all considered MPC algorithms two reference
trajectories are used. The first trajectory is

Fig. 15. Experiment 1 (the reference trajectory 2): the GPC algorithm based on the linear model.

Tro ifk <3
28.75°C if3 <k <49
Tref(k) = { 28.0°C  if50 < k <99 (56)
28.75°C if100 < k < 149
Tro if150 < k <200
while the second trajectory is
Tr’(] ifk <3
30.25°C if3<k<49
Tref(k) = { 31.0°C if50 <k <99 (57)
30.25°C if100 <k < 149
Tro if150 < k < 200
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Fig. 16. Experiment 1 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model; top: the whole simulation, bottom: enlarged fragments.

To emphasise the accuracy and the computational efficiency of
the discussed MPC-NPL algorithm based on the neural model, in the
following part of the article three MPC algorithms are compared

(a) the MPC algorithm based on the linear model (54);

(b) the suboptimal MPC-NPL algorithm based on the pruned neural
model (51);

(c) the MPC algorithm with on-line Nonlinear Optimisation (MPC-
NO) [17,36,37] based on the same neural model.
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k

200

As the first MPC algorithm the Generalized Predictive Con-
trol (GPC) algorithm [3] is used. At each sampling instant of
the algorithm a quadratic programming problem is solved. The
MPC-NPL algorithm uses the quadratic programming procedure
whereas the MPC-NO algorithm uses Sequential Quadratic Pro-
gramming (SQP) [1] nonlinear optimization subroutine. As the
initial point for optimisation, N, — 1 control values calculated at
the previous sampling instant and not applied to the process is
used.
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Fig. 17. Experiment 1 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model.
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process) has its nominal value 25°C.

045 -0.53

Table 4 Table 5
The performance index J; for GPC, MPC-NPL and MPC-NO algorithms The performance index J5 for GPC, MPC-NPL and MPC-NO algorithms
Experiment GPC MPC-NPL MPC-NO Experiment GPC MPC-NPL MPC-NO
1 85.742 49.586 49.363 1 40.417 25.950 25.893
2 85.742 58.096 57.883 2 40.417 31911 31.892
3 86.090 51.885 51.743 3 40.486 26.070 25.991
4 78.871 51.932 51.769 4 35.446 26.693 26.620
5 83.499 53.265 53.024 5 37.757 26.589 26.586
6 86.221 55.564 55.385 6 41.360 26.954 26.900
3.3.1. Experiment 1 -0.43

In the first experiment carried out it is assumed that unmea- ~0.435 -0.51
sured disturbances are not present and the temperature Tj, of the _0.44 s
substrate flow entering the reactor (the main disturbance of the = a

& TV «

Because of a highly nonlinear nature of the yeast fermentation
reactor, the accuracy of the linear model is low as shown in Fig. 12.
As aresults, the GPC algorithm based on the linear model is unable
to control the process efficiently as depicted in Figs. 14 and 15. The
linear GPC algorithm is very slow, the manipulated variable is quite
sluggish, rendering the controlled variable unable to track refer-
ence trajectories fast enough. Hence, it is justified to use nonlinear
models in MPC rather than linear ones.

Simulation results of the MPC-NPL algorithm and the MPC-
NO algorithm based on the same neural model are depicted in
Figs. 16 and 17. Both MPC algorithms based on the neural model
are significantly faster than the GPC algorithm based on the linear
model. Moreover, for both reference trajectories the closed-loop
performance obtained in the suboptimal MPC-NPL algorithm with
quadratic programming is very similar to that obtained in the com-
putationally demanding MPC-NO approach, in which a nonlinear
optimisation problem has to be solved on-line at each sampling
instant.

Differences between MPC-NPL and MPC-NO approaches are
very small, which means that obtained trajectories of the system are
practically the same as shown in 16 and Fig. 17. In order to make it
possible to compare all three examined algorithms (GPC, MPC-NPL
and MPC-NO), two typical control performance indices are calcu-
lated after completing simulations. The sum of absolute values of
differences between the reference trajectory and the actual value
of the controlled variable over the whole simulation horizon

k=200

Ji="> T = Te(k) (58)
k=1

and the sum of squared differences
k=200

b= (T - Tk’ (59)

k=1

are calculated. Parameters J; and J, obtained in all six considered
experiments are collected in Tables 4 and 5, performance indices
are calculated for both reference trajectories.
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Fig. 18. Experiment 1 (the reference trajectory 1): parameters of the linearised
model in the MPC-NPL algorithm.
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Fig. 19. Experiment 1 (the reference trajectory 2): parameters of the linearised
model in the MPC-NPL algorithm.

Table 6

The computational complexity in terms of floating point operations (MFLOPS) of MPC-NO and MPC-NPL algorithms

Algorithm N Ny =1 Ny =2 Ny =3 Ny=4 Ny =5 Ny =10 Ny =15
MPC-NPL 5 0.57 0.68 0.93 1.29 1.81 - -
MPC-NO 5 4.10 6.19 13.25 17.71 28.65 - -
MPC-NPL 10 0.90 1.03 1.31 1.70 2.26 7.88 -
MPC-NO 10 6.28 10.87 19.10 28.50 43.52 180.53 -
MPC-NPL 15 1.23 1.38 1.68 2.11 2.70 8.60 21.83
MPC-NO 15 8.92 17.93 28.61 42.20 61.64 222.34 587.43
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Fig. 20. Experiment 2 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model with constraints imposed on increments of the manipulated variable, AFz g =
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Fig. 21. Experiment 2 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model with constraints imposed on increments of the manipulated variable, AFp® =

Table 6 shows the computational complexity of compared
MPC-NPL and MPC-NO algorithms based on the neural model in
terms of floating point operations (MFLOPS) for different com-
binations of prediction and control horizons (for both reference
trajectories). In general, the suboptimal MPC-NPL algorithm is

60 T T

1 50 100 150 200

31/h.

many times computationally less demanding that the MPC-NO
algorithm. The control horizon has significantly bigger impact on
the computational burden than the prediction horizon since Ny
is the number of decision variables of the optimisation prob-
lem.
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Fig. 22. Experiment 3 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model in presence of unmeasured disturbances.
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Fig. 23. Experiment 3 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model in presence of unmeasured disturbances.
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Fig. 24. Experiment 4 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model, the temperature Tj, of the substrate flow entering the reactor is 24 °C.

In the MPC-NPL algorithm the neural model (7) is linearised
on-line about the current state of the process (31). The linearised
model (32) is next used for calculation of the current value of the
manipulated variable as described in Section 2.3. Parameters aq,
ay, by, by of the linearised model are shown in Figs. 18 and 19.
One can observe that changes of these parameters are not big. It
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is because reference trajectories (56) and (57) are defined in such
away that 28°C < TrrEf < 31°C whereas the steady-state character-
istic shown in Fig. 4 covers the whole range of the manipulated
variable (01/h < Fag < 2001/h) for which 22.52°C < T; < 36.03°C.
Naturally, the neural model covers the whole range of inter-
est.
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Fig. 25. Experiment 4 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model, the temperature Tj, of the substrate flow entering the reactor is 24 °C.
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Fig. 26. Experiment 5 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model, the temperature T;, of the substrate flow entering the reactor is 26 °C.
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Fig. 27. Experiment 5 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural

model, the temperature T;, of the substrate flow entering the reactor is 26 °C.

3.3.2. Experiment 2

In the second experiment, it is assumed that unmeasured dis-
turbances are not present and the temperature T;, has its nominal
value, but constraints imposed on increments of the manipulated
variable are taken into account (AF* = 31/h is assumed). Such
constraints are likely to be very important when changes in the
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reference trajectory are big, they take into account the actuator’s
limitations. The GPC algorithm based on the linear model gives very
slow transient responses, exactly the same as in the first exper-
iment (Figs. 14 and). It is because increments of the manipulated
variable are smaller than 3 1/h. Simulation results of both nonlinear
MPC algorithms are shown in Figs. 20 and 21. In comparison with
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Fig. 28. Experiment 6 (the reference trajectory 1): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
model in presence of step changes of the temperature Tj, of the substrate flow entering the reactor given by (60).
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Fig. 29. Experiment 6 (the reference trajectory 2): the MPC-NPL algorithm (dashed line with circles) and the MPC-NO algorithm (solid line with dots) based on the same neural
model in presence of step changes of the temperature T;, of the substrate flow entering the reactor given by (60).

Figs. 16 and 17, the additional constraints result in a slightly slower
output profile, but the constraints are always satisfied. Constraints
satisfaction is a great advantage when one compares the MPC algo-
rithm described here and an easy to implement controller based on
an inverse model of the process [26].

3.3.3. Experiment 3

In the third experiment, it is assumed that unmeasured distur-
bances affect the process and the temperature Tj, has its nominal
value. Disturbance rejection is a very important ability of any
control algorithms as disturbances are unavoidable in practice.
Simulation results are shown in Figs. 22 and 23. Because the GPC
algorithm based on the linear model is slow, for this experiment
and the the next ones simulation results of nonlinear MPC-NPL and
MPC-NO algorithms are only depicted while performance indices
J1 and J, given in Tables 4 and 5 are calculated for all three studied
algorithms.

3.3.4. Experiment 4

In the fourth experiment it is assumed that unmeasured dis-
turbances are not present and the temperature T, of the substrate
flow entering the reactor (the main disturbance of the process) is
decreased from its nominal value 25 ° C to 24 °C. In MPC algorithms
still the same neural model is used (trained for nominal conditions).
Simulation results are shown in Figs. 24 and 25. In comparison with
the nominal value of the temperature T;, case (Figs. 16 and 17) the
main change is the level of the manipulated variable.

3.3.5. Experiment 5

In the fifth experiment it is assumed that the temperature T;,, of
the substrate flow entering the reactor is increased from its nominal
value 25° C to 26 °C. Figs. 26 and 27 depict simulation results.

3.3.6. Experiment 6

In the sixth experiment it is assumed that the temperature T;,, of
the substrate flow entering the reactor changes changes according
to the equation

25.0°C
25.5°C
24.5°C
25.5°C
24.5°C
25.5°C

ifk <3
if3<k<24
if25<k<74
if75 <k <124
if125 <k <174
if175 < k <200

Figs. 28 and 29 depict simulation results.

Considering simulation results (figures and values of the per-
formance indices J1, J»), one can conclude that the GPC algorithm
based on the linear model is slow and the suboptimal MPC-NPL
algorithm with quadratic programming gives very similar transient
responses to those obtained in the computationally demanding
MPC-NO approach, in which a nonlinear optimisation problem has
to be solved on-line at each sampling instant.

4. Conclusions

This paper discusses the application of artificial neural networks
to modelling and temperature control of a yeast fermentation
biochemical reactor detailed in [26]. Because the process exhibit
significantly nonlinear behaviour, the accuracy of the linear model
is low. As a result, the classical PID controller and the MPC algo-
rithm based on a linear model are unable to control the process
efficiently as demonstrated in [26] and in this paper.

The identification procedure of neural models described in this
paper contains two stages. At first, a few neural networks (with dif-
ferent numbers of hidden nodes) are trained using available data
sets generated from the fundamental model. The model contain-
ing 5 hidden nodes is chosen as a reasonable compromise between
the accuracy and the complexity. The rudimentary model has 31
weights. Next, in order to reduce the complexity of the neural model
and to improve its prediction ability the neural network is pruned
using the Optimal Brain Damage algorithm. As a result of pruning,
12 weights are removed, which means that the complexity of the
rudimentary neural network is reduced by 38%. At the same time,
the pruned model has very good generalisation abilities, i.e. the
SSE performance index of the pruned neural network for the train-
ing data set is significantly smaller than that of the rudimentary
network.

Next, a computationally efficient nonlinear MPC algorithm with
Nonlinear Prediction and Linearisation (MPC-NPL) [17,18,36,37] is
applied to the process. It is demonstrated that the algorithm results
in closed-loop control performance similar to that obtained in non-
linear MPC, in which nonlinear optimisation is repeated at each
sampling instant. The computational efficiency of the MPC-NPL
algorithm is twofold. First of all, the suboptimal algorithm uses
on-line only the numerically reliable quadratic programming pro-
cedure, unlike the nonlinear optimisation, which may terminate
in a local minimum, the global solution is always found within a
foreseeable time frame. Secondly, the computational complexity
reduction obtained in the suboptimal algorithm compared to the
MPC-NO algorithm in very big as shown in Table 6.
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In this paper MPC algorithms based on neural models are recom-
mended. Such an approach has many advantages. First of all, neural
models are trained from given sets of process data, it is not neces-
sary to develop complicated fundamental models (in this study the
fundamental model is only used as the real process during sim-
ulations). Secondly, implementation of the considered MPC-NPL
algorithm is relatively easy. It is because neural networks have
simple structures and limited numbers of parameters. Moreover,
neural models directly describe input-output relations of process
variables. It means that complicated systems of differential and
algebraic equations comprising the fundamental model do not have
to be solved on-line in MPC. It is particulary important in the case of
the considered yeast fermentation process because its fundamental
model is stiff, the specialised solver for stiff differential equations
should be used.
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